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AMPLPT’UDEDISTRIBUTION ~ ZZtl!RXBALAN(X OF SMALL

DISTURBANCES IN PLNCE FLOW*

By H. Schlichting

In a previous report by W. ToNen, the stability of l~nar flow
yast’a flat plate was Investigated by the method of smsll vibrations,
and the wave length X = 2fl/a,the ptie velocity Cr, and the Reynolds

number R of the neutral disturbances established. h connection with
this, the present ~eport deals with the average disturbance veloc–

ities w’ =d r
U’v’

72 and the correlation coefficient ~_

L’2XV’2.
as function of the wall distance y for two special neutral.disturbances
(one at the lower and one at the upper branch of the equilibrium curve
in the aR plane). The maximum value of the last two quantities lies
in the vicinity of the criticsl l~er where the velocity of the basic
flow and the phase velocity of the disturbance motion are equal. The
energy balance of the disturlmnce motion is investigated. The trensfer
of energy from primary to secondary motion occms chiefly in the neigh-
borhood of the criticel leyer, while the Ussipation is ehost completely
confined to a small lsyer next to the wsll. The energg conversion in
the two explored disturbances is as follows: In one oscillation period,
half of the totel kinetic energy of the disturbemce motion on the lower
branch of the equilibrium curve is destroyed by dissipation and replaced
by the energy transferred from the primary to the secondary motion. For
the disturbance on the upper brsnch of the equilibrium curve, about a
fourth of the kinetic energy of the disturbance motion is dissipated end
replaced in one oscillation period. The requirement that the totsl
energ belance for the neutral disturbances be equal to zero is fulfilled
with close approximation end affords a welccme check on the previous
solution of the characteristic velue problem.

.

.

*nAm@itudenverteilung und ?lnergiebilanzder kleinen St”&ungen bei
der Plattenstrbmng.n Nachrichten Ton der Gesellschaft der Wissenschsften
zu &jtjtingen,Neue Folge, B~d lj No. 4, 1935, PP. 47–78.
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1. Introduction
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The numerous efforts, within the last decade, to solve the ~roblem ,
of turbulence (reference 1) have at least produced some satisfactory
results for a certain class of lounde.qy-leyerprofiles when their
stalility was investigated by the method of amald.vibratiom, with due
consideration to the flrictionof the fluid and the profile curvature
(reference 2). Referring to Toll.mien(reference 3), who treated the
exeqle of lsminar flow past a flat plate, the writer investigated
several other cases: the Couette flow (reference 4), the apllfication
of the unstable disturbances in plate flow (reference 5), sad the
stabilizing effect of a stratification by centrifugal forces (reference 6),
and temperature gradients (reference 7). Every one of the investigations
was restricted to the solution of the corresponding characteristic-ralue
problems, without calculating the characteristic function itself. In
that manner, the wave lengths of the unstalle, hence “dangerous”,
disturbances were identified as function of the Reynolds numler. In
most cases, only the disturhnces situated right at the boundary,
letween amplification and dsmplng, were detetined. For these, just
as much energy is transferred from the prhaz’y to the secondery flow,
as secondsq+notion energy is dissipated by the friction so that the
total ener~ balance is zero.

All the stability studies made up to now were, for reasons of
mathematical simplicity, based upon an assumed3y plane fundamental flow,
which depends only on the coordinate transverse to the direction of the
flow, and a plene superposed disturbance motion which propagates in form
of a wave motion in the primary-flow direction. While there is no
objection to the limitation to the plsne fundamental flow, since it is
frequently realized exyerimental&y, objection w be raised to the @.ue
disturbance motion because the disturbances accidentally produced in
practice are almost S.I-WS three+ihmnsional. Accordingly, it might
appear as if the limitation to two-dhensional disturbances was all
too special. However, H. B. Squire (reference 8) recent3y demonstrated
on the Couette flow - this theorem is equally applicable to boundary-
leyer profiles -that precisely the specific case of the two-dimensional
disturbance motion is particularly suitable for the stability study in
the following sense: According to Squire, a two+imensional flow, which
is unstable against three-dimensionaldisturbances at a certain Reynolds
number, is unstable against two-dimensionaldisturbances even at a lower
Reynolds number. The two-dimensionaldisturbances are therefore “more
dangerous” for a flow than the three-dimensional. The criticel Reynolds
number, which is defined as lowest stability limit, is thus obtained
precisely from the two+imensional, not the three-dimensional, disturbances.

To gain a deeper insight into the mechanism of the turbulence
phenomena from small unstable disturbances, a more detailed knowledge
of the properties of these small disturbances is necesssry. The present
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report, therefore,
of the disturbance
the characteristic

3

deals first, with the distribution of the am~litude
over the flow section, that is, the calculation of
functions and second, with the study of the ener~

distribution snd energy lslance of the &sturbsmce motion. The inve~ti-
gations =e lased upon the disturlsnces of the laminar flow ~ast a flat
plate which sxe situated exactly at the boundary %etween amplification
and dsmping (neutral oscillations).

Chapter I

AMPIJ3NJDEDISTRIBUl!ION

2. Discussion of the differential equation of disturbance.

Let U(y) be the velocity distribution of the fundamental flow
(fig. 1) and $ the flow function of the superposed disturban~e motion,
which is assumed as a wave motion moving h the x direction (direction
of prhmry flow), whose smplitude q is solely dependent on y, hence

Iy(x,y,t)= Q(y)ei(=+t) = ~(y)eidx--d

aisreslandh= 2Yr/u is the wave length
~=&+i9iandc = P/a me, in genersl,

the period of oscillation; pi tidicates the
depending upon whether positive or negative;

of the &Lsturbsnce;
complex; T = 2fi/f3r iS

simplificationor the demping,

cr = Pr/a is the phase

velocity of the disturbance. For the disturbance smplitude q, after
introduction of dimensionless varia%les from the Navier-Stokes differential
equations, it results in a linear-differential.equation of the fourth
order, the differential equation of the disturbance

(u - C)(q” - a%p)- TJwp= - *(W’ - 2u%p” + dq) (1)

(R = UJ5/V = Reyuolti number, Urn= constsnt velocity outside of the

boundary layer, ~ = characteristic length of the boundary-1 er
profile 7= boundsry-l~er thickness, v = kinematic viscosity. The
general solution q of the disturbance equation is built up from four
particular solutions 91, .... Ph

T = Clcpl+ c2q)2
+ C393 + C494 (2)
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The
(as

and

The

boundary conditions p = q’ = O
explained in the report cited in
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for y =0 sndy=m give
reference (5))

o (Sa)

for Cl, C2, C3 the system of equations

Cdlo + c2~20
+ c3q30 = o

1

(4)
CIQ’10‘+cq2 20‘ + c3q?30’= o

Clola+ c2~2a= o

(% =Pva’ + wv~; ~ =1, 2)
/

subscript O indicates the values at the wall y = O, subscript a
the vslues in the connecting point.
velocity. From (4) the equation of
follows-as

.
u

—

.

Y = a to the region of constant
the characteristicvalue problem

.-

.

=0 (5) “

This equation is discussed in the earlier reports for s&eral cases.
It contains, aside from the constants of the basic profile, the
parameters a, R, Cr, and Ct. The complex equation (5)”-1sSquivd.ent ‘.

to two resl equations, and, if limited to the case of neutrsl disturbances

(
Ci = 0), these two equations give, after elimination of. Cr, one

equation between a end R. This is the equation of the neutral curve
in the aR plene, which separates the Unstable from the stable disturbance
attitudes, and was originally computed by Tollmien for the plate flow.
They are assumed to be known for the subsequent study (fig. 2).1

%’he writer computed the neutral curve for the plate flow cited
—

under reference 5 ag-ti
Tollmien’s report. The

ad found some
newly obtained

differences with respect to
V~LZe6 are used ti this study.

.

.
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the following, the amplitude end energy distribution is computed
neutral oscillations, one of which lies on the lower, the other

on the upper brsrmh of the eiuililn?iumcurve (fig. 2). The parameters
of these two neutrel oscillations, obtained from the earlier calculation,
are indicated in table 1.

For the calculation of the integration constants Cl,

from (4), we put

c1 =1

because the emplitude of disturbance remains indeterminate
constant factor, the intensity factor of the disturbance motion. Thus,

for the other two constants

C2 . ala

02a

.

(6)

The particular solutions CP1(Y)-d C?2(Y)~e rea~Q obt~nahle

~y expsnsion in series from the so-called frictiotiess differential
equation of disturbance of the second order, which follows from the
general equation (1) by omission of the terms on the right-hand side
afflicted with the msll factor l/aR. The point U = Cr, where phase

velocity of disturbance motion and %asic flow velocity agree, and which
is termed the criticel point y = Yk, is a singul= point of the

frictionless dl.fferentialequation of disturbance, which PIWS a
prominent part in the investigations.

.

.
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Putt ing

where subscriyt k denotes the values at the critical points, the
frictionless solutions for linear2 velocity distribution read

-1 slnh(cq-YJ; ~pP1 =a

and for perabolic velocity distribution

= cosh(alyl) (8)

w~

‘= aly2a- yk
+ a~22 + a3y23 + ..*

(7)

V2 =bo+bl Y2+32Y22+ ”””

= bO + b1y2”+ b#22
92 + •~*-l-

~ tl

+U-+l log

k
Y2 for y2> O (9)

.

‘k”
—QJlot31Y21 - ifi)‘for y2~ O
Uk’

%he Blasius profile of the plate flow is approximated by a linear
and a quadratic function (fig. l),nemely

o’Sy/850.175: u%= 1.68y/5

o.175sy/5sl.o15: u/q# 1 - (1.015 -y/5)2 (Ya)

y/~ 21.015: u/tJm= 1

.

. .

.

.-

*-
-.

—

For the connection between b and the displacement thiclmess & wed
in figure 2, 5* = 0.3418 is applicable.

.

.
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According to esrlier data, the coefficients.

.

are given by the equations

a5
= –0.0013 %2 + 0.0083 CL24;a6 = 0.0024 u22 + 0.0006 %4

bo
%2

=l; b1=o;112=-1.+~ (lo)

b3
= 0.125 +o.056~2; 114=0.0~-0.141a22 +0.042~4

b5
= 0.005 +0.005 a22 +

b6 = 0.0015 + 0.001Z”~2

The particular solution

0.004 &

-0.0038 a24 + 0.0014 %6

cpq,with its derivatives, is regular

(throughout the entire range of ~low -1~ yl~ O, OS Y2~ +1 , and cen)
be nrauericall.ycomputed with these data. But the particular solution q2

has’a singularity, in which CP2’ %ecomes logarithmically infinite in

the criticel lwer y = yk. Tha more detailed discussion has shown that

the friction at the wall, and in a restricted vicinity of the critical
l~er, must be taken tito consideration. The first gives the friction

‘O1utim ‘3’
the other, the,fl?ictioncorrection for CP2. Introducing

the new vsriable

n (= y - Y~) (@uk’)1’3 = ‘+
1

(n)

gives (only the greatest terms from (1) for q(q) being tsken into
account) the differential equation

QI

iq)”” + ?p” = 6 (12)
Uk’

from which follows the correction for Q2 ne~ the critic~ @fer, as

well as the third friction-fected solution T . The calculation of
3

these two solutions merits a little closer study.
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3. The friction solution cp3
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*

The friction solution CP3 is obtained from the differential

equation (12) when the inhomogeneous terms encumleyed with the,smell
factor G are omitted; hence, from the differential equation

Unusuel in this equation is that, in contrast to the complete disturbance
equation (1) and to the frictio.flessequation of dist~bance, the
dependence of the ymsmeters a, R, and U’ by (I-1)enters only as
scale factor for y, and that it is not at all affected by U“. As a
result, q (~) can be computed once for all entirely independent from the

‘ report (reference 9)
3

velocity profile. In this instance, Tietjens

—

constitutes

‘d ’32” =

a valuable support. A fundamental system ~311’= Fl”

F2° of equation (13) is given by >

The expemion in series of the Bessel functims

.
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.

gives, when the constant factors [+)1’3 (-i)l’6/r ($)

()
-1/3 -1/6

and ~ (-i) r~
3 /()3

exe omitted

77 ~13 19
F1’’(v)=TI -— + +—”””

2:32*4*7 4:34”4”7”10”13 6!36”4”7”10”13”16”19

{

+iJIL. 2+
16 “

}

—i- ““”

1!31”4 3!33~4*7do 5!3504~7s10*13c16

76 12
F2’’(q)= l– + _+ ...

2!32=2.5 4!34=2*5~8011

/

{

~3
~9 15

+i
+ 5:35.2.5.80U=14 1_+...

1!3’1=2 3!33029508

(15)

Owing to the boundary condition fpq” = 0 for TI= + w only the solution

aggregate PIF~’ + t3#2° approaching zero for great positive real q

(PI, 92 = integration

can be represented by

subscript ~ and the
3.

constants) comes into question. For great q, this

the Hankel function of the second kind with the

argument ~3/2 –ifl/4,hence bY
3e

F4’’(71)= r#2 H
[ 1(2):n3/2 e-i7c/4~3ft=

l/3
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Herewith, the looked-for solution of (13) -the constant factor being
put as (p3’(~o)=q30’ for the sake of simplicity - is given as

expemsion in power series near
.

.

and as asymptotic expemion for

~=o

(131F1°‘ $2%”) (16a)
.

great q

Integrating between the limits To and q gives

(16b)

where B and D we additional integration constants dependent

on 7.; To is the T coordinate at the wall, y = O; hence by (11)

1/3
?0 = ~k/~ = ‘yk(@uk’) (ha)

The boundary condition q 1
3 /930’ =1 aty = O, that is, ~ = ~o, is

fulfilled by adding the term 1 in equation (16h).

3 43930’ is the gliding speed of the frictionless solution at the

wall ●

.

._

.

-.
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Ti&jens

the fact that

11

computed the integration constants Bl, S2, B, D from

at a point q = 71, which lies in the range of validity

of both expansion, asymptotic expsnsion and power series expensicm of
the solution of (13) up to and including the third differential quotient
must agree. The resultent equation system, set up and solved by Tietjens,

(a)

(b)

(c)
1
I

(17)

(d)

The integration constants Pl, P2, B, ~d D can also be computed

by a simpler method than Tietjens’,’with the aid of the transition

formula from Hankel’s to Besselts functions, which reeds4

{

(2)(z) =- Stiifl,3 efli/3Jl/3(Z) -J_l/3(z)
‘1/3

}

This obViates the joining of the
snd (17b) gi-:esthe exact values

()

4

7~=+-l@ 32/3 ~
P1

()3

= –1.190 + o.687i

two expansicms, makes (17) suyerfluws,
lmnediately:

= 0.789(1 + i)

4
Tollm.ien,who pointed this out to

. as far back as 1929, but S~ ily took
sske of simplicity.

.

the writer, had this re~resentation
over the data by Tiet~ens for the
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The factors P, and D as function of q= can then slso.be hdicated
w

explicitly, n&ely

E@) = ipi

1(19)

—
—

Table 2 contains the results of a new calculation of Tietjens’ value
c~ied out hy these formulas. The differences fram Tiet~ens’ figures are

A-

/

IV

/

?
insignificant. The values of F1n~ F2n~ Flnd~ =F1’, ~ F2nd~ = F2’,

o

1

7

/

.

F1’d~ =,1, *‘“F2’dq = F2 as function of ~ we Indicated separately
o’
as red and imaginq pert in talle 3. Since, according to (15), these
quantities are either eymnetrical or antisym.etric functions of q, this
table can be continued inmedfately according to the negative values of q.

For the two neutral oscillations, whose amplitude end ener~ distri-
bution is to be computed, it is

.-

The corresponding values of c, according to (ha), are given in table I.
along with the integration ccmstants PIs ~2~ D obtained ~y interpolation

for these ~. ~~ues.

This takes care of all the data necessary for computing the friction
solution (p~ with its first and seccmd derivative as function of ~ by

the equations (16a, b, and c)’. Table 4 gives the thus obtained values

.

.-
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P3“ 93’ 93
—— — as function of ~. The connection between q end y

‘f cp30’T30’ ~30’

is, according to equation (11),

Y =yk+q

In all cases, the friction solution CPQ from the wall toward the inside

of the flow is very quickly damped
beyond the criticsl layer for both

k. The friction correction of

out; but it still extends a little
oscillations.

92 in the intermediate layer

The second frictionless solution rp2 behaves singularly at the critiCSl
~kll

lsyer y = yk, n~~ through equation (9) as ~(y ‘yk)log(y ‘yk),
k

so that 92’ behaves as ‘k”

{
~~ 1 + 10g(y ‘yk)

}
and q2° behaves

k’
‘k” 1

as Ukl (Y - yk) ●

.

From the differential equation (12), in which only the ~eatest
friction te~ are taken into account, follows a solution ~2 modified

by the friction, which joins the frictionless solution at some distance
from the critical point. For this purpose ~2 is expanded in powers

of the previously introduced smsll quantity 6 = (aXuk~)-1/3

(20)

~20 %eing chosen equal to unity. From (12) follows the inhomogeneous

differential equation

(21)

for q~ with reference to ~.
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On account of the
even at small y - yk

very small value of
values. An attempt

solution Q21° of this equation, which

joins on to the frictionless solution

d2q2 U“”
—.— —

NACA TM 1265

~> v can EL&sum great velues
is made to find such a

for large q, but small (y – yk)

1—

dY2
Uk’ Y –Y~

For lsrge q there shell be:

●

.

.

.:

(22))

The corresponding homogeneous equation appesred earlier in the
calculation of ~3 (equation (13)). It has the fundamental system F1’’(~)

~d F2’’(q)(equation (15)). A yrticuler solution of (21) is

which can be verified easily by substitution,
of (21) is

J

end the general solution

.

b-

.

The integration constants c1 and C2, which can be complex, are

evaluated from the boundsry conditions. The quantity 921” is complex

and sh~l join the real frictionless value (eq~tion (22)) for l~ge
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values of q. By decomyosftion in real and imagin~ parts, the four
equations defining the integration constsnts read

u~’
~2ti” = G“(q) = _2inFh’ -F&’’Fli’ +F1i”F& -1-F#?2i’
k

+ cLrFlr” - QLi” + ?&r” - c@2i” = *

Uk’
u~21i” = ~“(v) = - F21’’Fli‘C+F&’’Fh’ + FlinF2i’ (24)– Fb’’F&:

+ C#u” + cliFh’* + c&F2i” + c2iFa” = O

for q = %1

)?rom(21), with the bo~dw con~tion (22)s ‘t ‘OUOws ‘hat ~2h” ‘s

an anti symnetricd, ad ~m” a symnetricsl function of q. Moreover,

since F~‘, F2i’, F~”, F1i” sre symmetrical

antisymmetkic~ functions of q, the following

Cli=ca=o

‘d ‘ii’> ‘2rt‘ ‘2i”‘ ‘h”
must he true

(25a)

for reasons of symmetry. The other two constants Cti, c2i me obtained

by solving the above equation system for q = ql. For the ~reaent

calculation, ql = 4 was chosen. The series for the Bessel functions

ere still fairly convergent for q = 4; but since differences of very
lerge numbers occur, the seyarate terms in (24)
five digits (table 3). For Cb ~d C2i

Cti = 1.2852; Czi = 0.9373

u~’ u~’
so that ~ ‘t= (#’(q)~d -#&’f =H’’(~)

Urtar
k ‘k

must be computed to

(25b)

can be calculated. The

values sre given in table 5.
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W2
The values of q12 and — in the intermediate l~er &re obtaine’d

Q
immediately by quadrature, namely

smd

A check

~~ ‘k”
{

—=uT (l+ loge) +G’(q)
Q .}_

dq2i Uk”

!

‘k” q—=-’(T) =— H“(q)d~ ‘k”
* Ukt = +’(q)

‘k’ 7=4 Uk’

(26a)

(26b)

on this numerical calculation is given by the fact that

for @2i
7 at transition from large positive to large negative q the

tr~sition substitution for Q2 deduced by Tollmien (reference 3) must

resfit again (ccmnpareequation (9)), which he obtained bY discussion of
the asymptotic representation of the Hankel functions. Tollmien’s
transitl-m substitution gives

()

,
dT2i

~ y.+. ()@2i
Ukll

= -G- Y=-”+~

.

.

.-
-—-

.

the present mmericel calculation gives

and the graphical integration gives

J‘m H’’(q)dqx
J

“H’’(~)dq = 3.14 (27)
-co 4

that is, complete agreement within the scope of mathematical accuracy.

,

-.

.
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The intermediate lsyer near the criticsl point, which by the
pres&t cslculationreaches tiom about q = -4 to T = +4, is tieady
so wide at the first neutrsl oscillation that it reaches up to the wall
(wall qn= -2.63); at the second oscillation with q. = --4.05,the

boundery”of the intermediate lsyer is reached exactly at the wall. With
this, sll data needed for the numerical calculation of the solution (p2,

corrected by the friction with q2’ and P2’~,are available.

5. The numerical.values of the integration constants

All three particular solutions cpl, (p2, V3 are numerically lmown.
.

To build up the required solution cp from it,-the numerical.values of
the integration constauts C2

and C3 must be ascertained (equation (6)).

First of all, equation (2) is rewritt& in a more stitable form, nsmel.y

(2a)

where equations”(3a) and (3b) were resorted to and (p
3

was replaced hy
.

‘he ‘-tity ‘3/q30’
which follows immediately from the nwnericsl

calculations. Comparison tith (6) gives

C3’ .;~20’ –~m ‘ (=-c2rp20’ + cplo’) (6a)

This method of writing has the advantage that the two integration
constants C2 snd C ‘

3
in (2a) me dependent only on the values of

the frictionless solutions cpl and q2j hence sre relatively simple

to compute.

The values of (pla~ ~2a~ ~la’~ Q2a’J ~la> @2a and the vslues

of c
2

and C3’ thus computed by (6) snd (6a) for both neutral

Oscillations me given in table 1. Table 6 and figures 3 aud 4 giVe .
the values of qr, cpi,qr’, cpi’ computed with it, hence the desired

amplitude distribution “asfunction of y/b.
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Outside of the boundary layer, at y/b > 1.015 the simple formula

~i=~~’=o

is valid for the amplitude distribution.
that the value of cpr’
(Talle l.)

joins the already

~*eW 1 (29)

The constant C* is so chosen
found value in y/5 = 1.015.

6. The average fluctuation velocities and the correction factor

(comysre reference 10)

Chm.ging to the real method of writing

Kiss
the one

a4f Ju’=—=K ~tCOS(~
tir L }

-Prt) -qi’ sin(ax-13rt) ~

(30)

a$
v’=-—= r

ax KCLCPrsin(cu -

1 }

Prt) +Qi COS(=-”Grt) Um

freely avaflable intensity factor. According to figures 3 end 4,
phase (qr or w’) predominates in both neutreJ oscillations.

Tne amplitude distribut”lonof u’ and v’ can be represented
most appropriately by forming, in analogy with the turbulent fluctuation

velocity, the dimensionless quantities ~and ‘, where the dash--”
urn ~

denotes the time average value formation over a period T at a fixed
point x, y, or in other words

/
~=+ T Utadt (T = vibration period)

t=o

—

-—

.

.

-.

-—

—
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The result is

end

—.
~12 +V’2 s

{
= ~ ~r’2 + pi’2 + Gz(qra + (4)12)

U.2 }

(31)

(32)

The last qusntity gives the mean ktietic energy of the motion
disturbance. (See eq. 36.) These averages, which are independent of x,
me represented in figures 5, 6, and 7 and table 7 for both neutrsl
vibrations as f~ctions of y/b. The fntensity factor itae~ was so

r~ in the boundary layer is equalchosen that the average vslue of

(/r

8
to O.omm * U’2 v

)

= O.OW. (table 1). The maximum amplitude
o

for both neutral vibrations lies near the critical layer. The correlation
factor between u’ and
intensity of the motion

k(u’, V’) =

k(u’, v’) =

,V’, which is complete”l.yinde~endent from the
disturbance, can then also be calculated. It is

(33)

The correlation factor is likewise dependent on y/b only; its
variation is indicated in figure 8 and table 7. It is negative almost
throughout the entire renge of the flow, for both neutral vibrations,
as is to be expected, since, owing to the positive dU/dy, positive u’
is usually.coupled with negative v’ and negative u’ with positive v’.
The maximum value of k is -0.17 and +.19, respectively. It is inter-
esting to compsre the theoretically established correlation coefficient
with Townend’s data in a developed turbulent flow (reference n). The k
values of -0.16 to -0018, obtained for the flow in a channel of squsre
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cross section at various distances from the sxis, are of the same order
of magnitude as those obtained by the present calculation for the
incipient turbulence.

.

Chapter II

ENIRGY DISTRUWTION

7. The kinetic energy of the disturbance motion.

Having established the amplitude distribution for the two neutral— —
vibrations, the energy of the disturbance motion c= be computed. The
total kinetic
which, in x
tion from the

energy of the disturbance motion in a lsyer of tit height,
direction, etienda over a wave length A and in y direc-
Wall to infinity is

E=
X.*

Q H (U’2 + -v’p)tidy
.-

2 X=o y=o
.

.

The energy dE of the secondary motion in a strip of width dy
and length A is accordin@y

da

{

p ~ 2K2 ($Ir’2+qi—=-
@ zzm tz + Up(qrz + q3i2)

1
Besides,

Ut2 7.”
0.533 SE= + v’

E. U um2

(35)

.

(36)

E is the basic-flow energy in a layer of unit height, length A, end

ti”dth a (compsre equation (32)). Figure 7 sh~s the dfme~i~ess
energy distribution by equations (35) and (36). The ener~ is stron&’
concentrated near the criticsl layer. To obtain the total energy E,
the integral (34)

limits 05g/8z

must be evaluated.

1.015 and 1.015<

Dividing It in two parts ~th the

y/8< CO,the first portion is
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obtained by graphical integration based on the cconputedsmplitude
distribution. The second portion is o%tained analytically by (29),
namely

The results of the evaluation are given in table

Now the energy of the disturbmce motion is
flow energy E. in the space of unit height and

It is, by equation (7a)

H
?bG

Eo=~ U(y)tiay = 0.533
x.” y.”

.
L.

cmnpared with
surface area

%uL2~~

the basic–
LX8.

(37)

Hence, for the ratio of energy of the secondary motion to the energy “
of the basic flow E/E. the values presented in table 1 ere obtained.

8. The ener~ balance of the disturbance motion.

Consider the time variation of the secondsry+notion energy of a
perticle that moves with the %asic flow, hence

“’p }=(&+u&)[i,u@+vf2)}DT + +V’2) (38)

For stable disturbances, the total change of energy of the secondary-

motion is g

///
D~u’2 + V’2) dv <O, for unstable disturbances >0,

2
and for neutral disturbances = O, the integration extending over the
entire rsnge of the psrticul.arflow. Participating on the vsriation
of the secondary+notion ener~ we: first, the transfer of kinetic
energy from the primary to the secondarg flow, or vice versa; second,
the pressure vsriation; and, third, dissipation. For neutral vibrations,
the total ener~ bs.lsnceis not only equal to zero for the entire space
in question, but for every point y of the cross section, the energy,
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increase per vibration

is easily confirmed in

period T = 2n/Pr Is

the following manner:

V’z)dt

NACA w u65

also equal to zero. This

It iS

f)m

&2 + V’Z)(it

The first term disappears by reason of
The same holds true when the last term
according to equation (30). Thus, the

the periodicity if u’ and V’.
for u’ and Vr is entered
ener~ increase per vibration

period T is equal to zero at evezy point x, y for a neutral
vibration.

. .

lt is interesting to see how the several factors” enumerated above
participate on the ener~ conversion in a specific case. For both
specific cases of neutral disturb=ce the calculation of the ener~
is csrried out for a plane basic flow and a plane disturbance motion
according to Lorentz (reference 12)

@(u’2+v’2)}=-p”’v’~-~+w}{

.

.

where

&l
s=~-& = coefficient of viscosity
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The first term gives the transfer of
secondsry flow, the second gives the

23

energy frcunthe primary to the
contribution resulting frcm the

pressure-variations, and th~ third and fourth terms, the l&s of energy
by dissipation. After integration of this term with respect to y over
the total width of the laminsr flow from y = O to y =~ end with
respect to x over a wave length h of the disturbance, the second and
fourth terms disappear, since u’ and v’ disappear for y = O
and y=w and with respect to x have the period k. Thus, the
growth of the energy per unit time in a lqer of unit height snd base
area 0<y<c9,0<x<h is:

The first integral gives the totsl ener~ passing from the primary to
the secondary motion; the second, the total dissipation. The portion
of the energy due to pressure variation is removed by the integration.
The two ener~ portions for the two neutral disturbemces are evaluated.
Through substitution of (30), followed by integration with respect
to x, we find

+ (q)l”
}

-a%i)2 *

or

el snd e2 denoting the dimensionless energy integrels

(40)

/

m
@@m) 1

Cn

el.- (qr’q~– q+JPf’) d(y/b) = el’d(y/~) (41a)
o d(y/~) o
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To find the energy change of the disturbance motion in the

NAC.ATM 1265

e2’d(y/b) (41h)

vibration
period T(T = A/ir, or = phase velocity), this energy change is referred

to the total kinetic energy E of the secondary motion which is given
by equation (34). From (40) follows then the specific ener~ change of
the disturbance motion as

T DE ‘m 2YI.— =——
/

m (el’ +e2’)d(y/b)
E. Dt cro.533z o

(42)

where Z = 0.432 and Z = o.81o for the first and second neutral
vibration, respectively, wblle ~/cr = 2.86 for both neutral vibrations.

The local energy trsmsfer frompr- to second~ motion (1) and
the local dissipation (2) for the two neutral vibrations is then

when

(43a,1)

‘he ‘dues ‘f ‘1,2
‘ (equations 41a, b) can be obtained (table 8) on

the basis of the computed exq?litudedistribution for both neutral
vibrations. Figure 9 represents the local energ conversion. The
dissipation in wsll proximity is seen to be extremely great, while the
critical layer is of no particular importance for the dissipation. But
the ener~ transfer from the primary to the secondary motion is greatest
in the neighborhood of the criticel layer, while at the wall and farther
outside it is very small. The curve is similar to that of the correla-
tion (fig. 8), as autlciyated.

The graphicsl integration of el’ ad e2’ gives the values

.

.-

—

indicated in table 1. DEThe energy balance ~% = O, or el + e2 = O

.,
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for the neutral vibrations is therefore fulfilled with satisfactory
approximation, end constitutes a very welcome check on the rather
complicated solution of the characteristic value problem.

The total energy transferred In vibration period T from the
prhary to the secondary motion is

emd the total energy dissipated

(M)2/’E= .78.0e2 or 41.6e2

These figures we also shown in ta%le 1. Thus, at the first neutral
vibration, about half of the secondery-motion energy is destroyed by
dissipation during one vibration; at the second neutral vibration, the
energy conversion is only about half as great.

At the second neutral vibration, the vibration period is a little
greater than at the first, that is, as is readily obtainable from the
data of table 1, is

()al%’p =10.1 x104~; T2= ~2=14.8XI-04~

‘1 urn’ ()
m

TO illustrate; For a plate flow in water with

v y 0.01 cm2sec-l; U = 20 cm see–lm
.

5A~cord@ to the present calculation, the dissipation for both
vibrations is somewhat greater than the transfer of ener~ from the
prhary to the secondq flow. This is due to the fact that in the
stability calculation only the dissipation of the friction solution P3

was taken into account, while the dissipation of the frictionless vibra-
tion (gl, 92) was ignored. But, in the ener~ equation, the ~ssiPation

of frictionless and frictional vibration was computed md is therefore a
little greater. Thus, the ‘neutral vibrations” have, exactly computed,
sti~ a little damping, end the indifference curve (fig. 2) is, as a
result, shifted a little toward the inside.

.

.
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the periods of vibration we

= 2.50 see; T2 = 3.70 sec
‘1

Thus, vibrations of comparatively great periods are involved.

Translated by J. ~anier
Nationel Advisory Ccmmittee
for Aeronautics

.

—

.-

.-

—

.
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TABLE1

~PAMMBITMOF THE TWO NEUTRAL VIBRATIONS OF TEE PIATI FLOW

I I

IFirst neutral Second neutral
vilrat ion vibration

d
(UJvv )
pr8/’qJ

cr/um

Y~
Uk’

P2

D

‘la
Pla‘

‘2a

v2a’

‘la
o2a

C2

C3’

r-y
K

)1.ol~

/( }
9r’2 + ~i’2 + a2($’r2”+9i2) @/b

o
w

J’,0,$}dy/8.

0.466
2.62 x 10

.163

.350

.209

L 625

–.494
G.63

12.6

{
.0695

+.lo2i

[
-.1526
-.0736i

{

1 ● 374
+.2ooi

.416

.040

.211

.234

&e 327

a101

1.005

{

-.046
+1.553i
-1.00

{ -.157i

.706
● 1454

.371

.090

0.737
6.08X d

.258

.350

.209
1.625
-.494

-4.05

19.4

{
-,0470
+.0276i

[
.0368

-.065iIi

[

● 395
+1.24i

.435

.097

.306

-2.240

,417

-2,014

.207

1.011

{

–.114
+1.563i

{

-0988
-.3251

1.075
.IL66

0681

.183

—

..

.
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TABLE 1

THE 2ARMETERS OF THE TWO NEUTRAL VIBMTIONS OF THE PLATE FLOW - Concluded

5*75

-6.16

First neutral vibration Second neutrsl vibration

E
o. 432K2 O.8K&

E:

E
~

0.00913 0.01.10

01 X 103

e2 X 103

(fm~

E
0.447 0.265

(m)2
-o●479

E
-0.294

6.39

-7.10
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TABLE 2 .-.

mwm CALCULATEDVAHJES OF 131AND D

.
—

-70 P1 D

o 0.387 + o.672i 0.672-o.387i
0.5 0.341 + o.366i 0.770- 0,38Qi
1.0 0.262 + o.n3i 0.892- o.350i
1.5 0.192 + 0,142i 1.023-o.261i
2.0 0.132 + o.113i 1.202-0 .135i
2.’5 0.0822+ o.1031i 1.358+ 0o124i
3.0. 0.0332+ 0.0972i 1.397+0.qlgi

-0.0165+ o.0782i 1.139+ 1.023i
;:2 -0.0465+ 0.0323i 0.493+ 1.214i
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THE I?ARTICUIAR

[

TABLE 3

SOLUTIONSOF q. As FUIWTIONOF ~
>

Compareequation (15)1

-,

~

o
0.5
1.0
1.5
2.0
2.5
2.63
3.0

H
4.05

o
0.5
1.0
1.5
2.0
2.5
2.63
3.0

::2
4.05

o
0.021
0.167
0.563
I.318
2.59
2.87
3*97
5.07
4.20
3.84
e.ntm!y.

‘M
o
0.000
0.003
0.032
0.177
0.678
0.901
1.94
4.55
8.70
9.13
By●

‘b-” I ‘lin
[

o 0
o.~oo 0.0052
O.gqlq0.0833
1.46610.4206
1.7472 1.3108
1.31003.0463
0.941 3.64
-1.11615.4735
-7.63146.7189
-19.4902:. p65
+20.94 .
entisy. By.

‘a?
o
0.125
0.500
1.122
1.974
2.97
3.2k
3.86
4.02
2.35
2.00

—

‘2i

o
0.000
0.008
0.063
0.266
0.797
1.022
1.91
3.72
5*
r5. 9

,antisy.

‘a”

;.9999
0.9944
0.9368
0.6469
4.3215
-0.776
4.7429
-7.2934
-12.5621
-12.92

W*

‘i’ I

o
0.0208
0.1666
0.5595
1.2939
2.3X24
2.58
3.0209
1.4618
~. y~61
.

antisy●

‘kc’
o
0.1250
0.4998
1.1186
1.9368
2.7503

;:EQ8
0.9512
+.6379
A.62
V*,

‘Jr “

;.9998
C&l&

0:1187
‘~.2818

-8.1612
-18.5245
G7 .2703

w.

Ft
li

o
0.0005
0.0167
0.126J+
0.5292
1.5799
2.02
3.6995
6.8796
9.2445
9.20
edisy.

I

‘2r’ ‘2i‘

o
0.5000
0.9992
1.4865
1.8988
2.0223
1.95
1.3354
-1.0850
-6.1155
-6.76
antisy.

=--K
o 0
0.0417-0.0010
0.3331-0.0333
1.IL65 -0.2525
2.5541-1.0533
4.3761-3.0889

4.7949-6.8785
-1.7400-u .0222
+?6.6992–7.4580

0
0.0026
0●0417
0.2065
0.6588
1.5544
1.88
2.9269
4.2LL3
3.3059
2.90
Sy.

nt
‘2i

o
0.1254)
0.4999
1.1072
1.8229
2.0809

0.1417
-7.8189
+26.7961

Sy.
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.

L
-1
0
1
2

:

r

+.05
-3.5
-3
-2.63
4
-1
0
1
2

:

TABLE4

THE FRICTION SOLUTION 93 AS FUNCTION

OF y/b AND ~

First Neutral Vibration

0
.050
.130
.209
.288
.368
.447
●577

-6.40
-5.67
–3.04
-1.92
-*995
-.202
.063

-.076

7.65
.794

-1.801
-.932
.113
.290
.076

-.012

1
.665
.329
.136
,019

-.025
-.027
-.020

0
.188
.106

-.012
-.040
-.02.8
–.003
.012

0
.029
●O*
.074
.105
.157
.209
.261
.313
.361
.415

-17●7
-17.6
+.~1
-4.91
–.272
1.378
.717

-.019
-.194
-.058
.039

34
8.22
–3.08
-4.67
-3.88
.4
-1.260
-.679
-.155
.019
0

1
.460
.106

–.030
–.103
-.OS
o
.016
.007
0
-.005

-o.111
-.069
–.029
-.009
-.001
0
0
0

-0.0159
-.0099
.0029
.0061
.0035
.0010
.0005
.0006

Second Neutral Vibration

o
.519
.534
●455
●309
.166
.084
.035
.013
.012
.014

-0.0204
.0001
●0070
.0076
.0051
.0005

-.0008
-.0002
0
0
0“

-0.0639
-.0554
–.041’5
-.0322
-.0202
-.0091
-.0035
-.0012
0
0
0

—
9
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-,

. rno.51
1.5
2
2.5
3
3*5
4

TABLE ~

THE FRICTION CORRECTION q IN THE
3

INTERMEDIATEIAYERAS FUNC?2!IONOF ~

G“(T)

o
.443
.746
.839
.767
● 589
.438
;325
.250

I.285
1.165
.857
.483
● 166

-.018
–.072
-.055
0

4,774
-.659
-.354
.051
.458
.798

1.056
1.243
1.386

* I

-1.570
-*953
-.448
-.118
.035
.073
.048
.013
0

G“(-q)= +(q); d’(q) = H“(q)

G’(q) =G’(q); H’(q) =-m–H’(q)

:—
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w

TABLE6

AS FUNCTION OF y/5

First Neutral Vibration

yp f?~ Ti ~~‘ ~~‘ Tr” ql

o 0 0 0 0 7.885 A.615
●o% .’011 -.0040 .411 -.135 6.235 -.003
.090 .032 -.0080 .620 -.115 4.580 .770
.130 .059 -.0112 ;782 -.025 3.200 1.717
●170 .090 -.0111 .896 .042 2.355
.209

1.240
.127 –,oo8a .976 .069 1.778 .434

.250 .166 -.0063 .986 .070 -.112 -.220

.290 .203 –*0041
●975 .O* -.699 –.576

●370 .276 -.0010 .831. ,.018 -1.543 -.347
.451 .335 0 .670 .005 -I.778 -.015
.531 .380 0 .510 -.003 -1.641 –.016
.612 .414 o’ .361 0 –1.606-- 0
.693 .438 0 .23 0

i
-1.514 0

.774 .453 0 .11 0 -1.431 0

.854 .458 0 .007 0 -1.364 0
●935 .455 0 -.101 0 -1.303 0
1.015 .445 0 -.205 0 -1.252 0

.

.

.

#
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TABLE6

DISTRIBUTION OF AMHJTUDES qr,

o
.029
.054
.074
.105,
.157
.209
.250
.290
.370
.451
.531
.612
.693
.774
.854
.935
1.015

o
.010
.033
●057
.096
.168
.236
.287
●333
.409.
.46g
.507
.532
.547
.550
.544
.527
.508

AS FUNCTION OF y/b

Tis Tr’, Pi’, q“, Q.?”
-L

– Concluded

Second Neutral Vibration

o
–.0038
–,0114
-*0140
–.0148
–.0086
–.0041
.0005
●0002
0
0
0
0
0
0
0
0
0

‘?r’

o“
.720
1.104
1.245
1.333
1.350
1.306
1.203
1.091
.827
.6a7
.409
.247
.105

-.026
-.148
–.260
-.367

o
–*337
-.237
-.113
.052
.129
.076
●014

-.016
-.016
0
0
0
0
0
0
0
0

28.54
20.27
9.16
4.25
.478
.5%

–1.218
+?.967
-2.961
+.86
+2.58
-2.21
-1●93
–1.72
–..56
–1●44
–1.32
–1.23

+7.89
-2.30
6.35
6.28
3.60
–.27
–1.54
–1.31
–.334
,144

0
0
0
0
0
0
0
0

I
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TABLE7

THE MEAN FLUCTUATION VELOCITIES @., ~, ~ -IC

7+72, mTmENERW OF THE DISTURBANCE MOTION u

CORRELNII~ COEFFIC= k AS FUNCTION

First Neutral Vibratfcm

o
.Oy)
.090
.130
.170
.209
.250
.290
.370
.451
.531
.612
.693
●774
.854
●935
1.015
1.1
1.2
1.3
1.4
l.?

o
.445
:64;

.922
1.005
1.016
1.003
.854
●689
.524
.371
.244
.121
.007
.103
.211
.203
.193
.185
.176
.168

o
.0546
.158
.2a7
.434
.608
*795
●973
I.322
1.605
1.820
1.g84
2.098
2.170
2.193
2.180
2.108
2.027
1.937
1.84g
1.763
1.681

o
.lg8
.4!20
.648
.8T4
1.019
1.040
1.019
.748
.*1
.309
.177
.104
.062
.048
.059
,Ogo
.082
.075
.068
.062
.057

*

.155

.169

.140

.109

.064

.022

.0075
0
0
0
0
0
0
0
0
0
0
0
0

.-
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TABLE7

37

~, p,

——

MOTION U’2 + V’2,

THE MEAN FLUCTUATING VELOCITIES

THE KINETIC ENERGY OF THE DISTURBANCE

I AND TEE CORRELATION COEFFICIENT -k AS FUNCTION OF y/b.

EQUATIONS (31), (32), (33) – Concluded

Second NeutieJ.Vibration

v=” r ——
10 -+ ~02 7 12 + V’2

y/8 Um
~02 u

Umz
*

m

o 0 0 0 0
.029 .661 .0655 .433 0
.054 ●937 .214 .869 .121
.074 1.038 .359 1.068 .170
.105 1.108

●595 1.218 .191
.157 1.127 1.028 1.262 .146
.209 1.086 1.445 1.190 .076
.250 .998 ;.f775 1.019 .010
.290 .906 . .85A -.015
.370 .686 2.50 .528 -.019
.451 ;50; 2.87 .332 0
.531 3.10 .208 0
.612 .205 3.26 .146 0
.693 .087 3.35 .118 0
.774 .022 3*37 .117 0
.854 .123 3.33 .124 0
●935 .=6 3.22 .149 0
1.015 ●305 3.11 .187 0
1.1 .292 2.925 ●171 0
1.2 .272 , 2.72 .146 0
1.3 .252 2.53 .126 0
1.4 .234 2.35 .109 0
1.5 .218 2.18 .093 0
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TABLE8

THE LOCAL ENERGY CONVERSION 1) = TRANSEER FROM

PRIMARY TO SECONDARY MOTION, 2) = DISSIPATION

EQUATIONS (41) ~ (43)

First Neutral Vibration

NACA TM 1.265 “-

.

y/6 81’ X 103 e2’ X 103 ; -&@)l : 4-(LIE)2

o 0 86.9 0 &.78
.050 .268 31.8 .021 -2.48
.090 2.150 17.6 .168 -1.37
.130 12.25 10.8 .955 -.84
.170 23.25 5*73 1.814 –.45
.209 28 2.64 2.18 –.21
.250 27.30 .06 2.13 0
.290 22.85 .72 1.78 -.05
.370 7.49 2.20 .584 -.17
.451 1.885 2.80 .147 -.22
.531 -1.102 2.43 -.086 -.19
.612 0 2.36 0 -.~8
.693 0 2.12 0 -.17
.774 0 1.92 0 -.15
.854 0 1.75 0 -.14
●935 0 1.61 0 -.13
1.015 0 1.50 0 -.12

—

—

b
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TABLE 8
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L

‘1’HELOCAL ENERGY CONVERSION 1) = TRANSFER FROM

PRIMARY TO SECONDARY MOTION, 2) = DISSIPATION

[~UATIONS (41) AND (43)] - Concluded

Second.Neutral Vibration

y/8 ‘ x 103 ‘ x 103‘1 ‘2 ; .&E) ~ ; +(LXE)2

o 0 320 0 –13.31
.029 1 83.6 -.044 -3.48
.054 ,.84

i
24.3 .326 –1.01

.074 1 .45 11.15 .768 -.464

.105 41.5 2.61 1.726 -.109

.157 55.6 ~04 2.310 –.002

.209 37.5 .84Q L 560 -.035

.250 3.22 !2.31 .217 -.096

.290 7.=97 2.01 –.331 –.084

.370 -8.44 1.91 –.351 -.079

.451 0 1.80 0 -.075

.531 0 1.38 0 -.057

.612 0 1.01 0 –.042

.693 0 .819 0 –.034
,774 0 .695 0 –.029
.854 0 .608 0 –.025
●935 o .520 0 –.022
1.015 0 .458 0 –.019
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Figurel.- Laminar flowpasttheplate.
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Figure 2.- The zone ofthestableand unstabledisturbancesofplateflow.
I = firstneutralvibration.H = secondneutralvibration.
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Figure 3.- Real and imaginarypart

disturbancemotion plottedagainst
vibration.
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Figure4.- Real and imaginarypart Pr,qi,qr’,qi’ ofthearnplit.udeof

disturbancemotion plottedagainstwalldistanceforthesecond neutral
vibration.
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Figure5.- v/
T

The mean fluctuatingvelocityinthex direction u Urn

plottedagainstthewalldistanceforbothneutralvibrations.
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Figure 6.- r/The mean fluctuatingvelocityinthe y direction v‘2Urn

plottedagainsttiewalldistanceforbothneutralvibrations.
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Figure 7.- ‘b
-%+ ~lz ~2

The mean kineticenergy ofthedisturbancemotion u

plottedagainstthewalldistanceforbothneutralvibrations.
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Figure 8.- The correlationcoefficientk = -

-z

plottedagainst yj~

forbothneutralvibrations.



44

..

15.0

/0.0

50

-25

NACA TM 1265 .

.

—

.—

—

.

.
—

Figure 9.- The localenergy conversionofthesecondarymotion forthe
firstand second neutralvibration.I (l),II(1)= energy transferfrom
primary tosecondaryflow;I (2),II(2)= dissipation.
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